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Abstract

Armadillos are bitten by several species of flea. Females of the genus Tunga penetrate
the epidermis and when in place are fertilised by males, after which the abdomen
swells enormously to form a ‘neosome’. Within the penetrans group, T. perforans, makes
lesions that perforate the osteoderms within the integument to form ~3 mm diameter
cavities occupied by a discoid neosome. We examined these lesions in carapace mate-
rial from animals which had died in the wild to see whether we could recruit evidence

as to how they may be generated, either by the insect or by the host. We studied one
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species without such lesions, the nine-banded armadillo Dasypus novemcinctus, and
two species with, the greater hairy armadillo Chaetophractus villosus and the southern
three-banded armadillo Tolypeutes matacus, both showing the characteristic ‘flea bite’
holes in the external surfaces of the osteoderms. Samples were studied by three-
dimensional backscattered electron mode scanning electron microscopy and X-ray
microtomography. Both methods showed resorption pit complexes in the external
surfaces of the osteoderms characteristic of those made by osteoclasts in active bone
resorption. Lesions involved both the syndesmoses (sutures) between adjacent bones
and the central regions of the osteoderms. Many lesions showed extensive repair by
infilling with new bone. We conclude that the T. perforans neosome creates a local

host response which causes bone resorption, creating the space in which it can grow.
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novemcinctus) inhabits the southern part of the United States
(McDonough & Loughry, 2018).

1 | INTRODUCTION

The xenarthrans (Mammalia, Xenarthra), with only 38 living species,
is the least diversified of the four major groups of placental mam-
mals and the only group which originated in South America (Feijo
et al., 2022; Gibb et al., 2016; Meredith et al., 2011). Amongst ex-
tant xenarthrans, only armadillos have dermal ossifications (=os-
teoderms). Practically all xenarthran living species are restricted

to the Neotropics and only the nine-banded armadillo (Dasypus

The armadillos are grouped into two families, Chlamyphoridae
and Dasypodidae (Gibb et al., 2016) and both have an osseous cara-
pace covering the dorsum, head and—in most species—the tail: they
have large anterior claws for digging and are omnivores (McDonough
& Loughry, 2018; Superina & Abba, 2018).

Armadillo osteoderms have extrinsic (Sharpey) fibre bone at

their junctional (suture facing) peripheries and on the outside, and
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are secondarily remodelled to osteonal and trabecular bone inter-
nally. The whole arrangement of the separate osteoderms is held to-
gether with Sharpey fibres running from one bone to the next (Alves
et al., 2017; Krmpotic et al., 2009, 2015; Scarano et al., 2019; Sire
et al., 2009; Vickaryous & Hall, 2006).

Armadillos are bitten by several species of flea, most of which be-
long to the families Malacopsyllidae and Tungidae (Ezquiaga & Lareschi,
2012; Ezquiaga et al., 2021; Sanchez et al., 2020). Both groups are
semi-penetrating or directly penetrating, in which females attach to
their host with serrated, sharp maxillary laciniae, showing great adapt-
ability to their host (Hopkins & Rothschild, 1953; Smit, 1987).

Females of the genus Tunga penetrate the epidermis and when
in place are fertilised by males, after which the abdomen increases
in linear size by up to 10 times to form a ‘neosome’ (Marshall, 1981;
Pampiglione et al., 2009).

The genus Tunga includes 13 species of flea distributed around
the tropics (De Avelar et al., 2012). Smit (1962) divided the genus
into two groups, the ‘penetrans group’ and the ‘caecata group’.
Within the penetrans group, a new species, T. perforans (Ezquiaga
et al., 2015), causes lesions which perforate the bones within the
integument of its host. However, lesions identical to those at-
tributed at T. perforans have been documented in at least six ar-
madillos species: Chaetophractus vellerosus, C. villosus, Tolypeutes
matacus, Zaedyus pichiy, Euphractus sexcinctus and Priodontes maxi-
mus (Ezquiaga et al., 2015, 2020). The neosome of this flea is discoid
and compressed anteroposteriorly. Males move freely on the host's
body (Ezquiaga et al., 2015).

The aim of this work was to investigate the lesions found on the
osteoderms of armadillos parasitised by T. perforans. We hypothe-
sised that the cavities eaten into the bone might be generated by the
recruitment of the host's osteoclasts and that they would resemble
Howship's lacunae, being formed of multiples of small resorption

pits.

2 | MATERIALS AND METHODS

We studied osteoderm samples from two armadillo species which
showed the characteristic ~3mm diameter lesions in the external
surfaces of the osteoderms: namely, one C. villosus (greater hairy ar-
madillo, the most common armadillo in the pampas grassland, Abba
& Vizcaino, 2011) and two samples of T. matacus (southern three-
banded armadillo, a species capable of rolling into a complete ball
in self-defence, Superina & Abba, 2018). These were adult speci-
mens found dead (by natural reasons or subsistence hunting) and of
unknown sex. The specimens examined are published in Ezquiaga
et al. (2020). We did not kill any animal for this study. The permis-
sion number of the field study issued by Direccién de Fauna y Areas
Naturales Protegidas de la Provincia del Chaco, Argentina was ‘dis-
position 12/2017’. There were many lesions in each of the samples.
We also studied bones from one road kill sample of Dasypus novemci-

nctus, the nine-banded armadillo, which has no such lesions.
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We used three-dimensional (3D) backscattered electron mode
scanning electron microscopy (BSE-SEM; Boyde, 2019), for which
samples were studied after treatment with sodium hypochlorite
bleach to remove residual adherent soft tissue and contaminant soil
or dust particles, washed, dried and imaged uncoated at 20kV, 50 Pa
chamber pressure, using a Zeiss EVO-MA10 SEM (Zeiss: all the SEM
figures except Figure S11a).

For X-ray microtomography (XMT) we used the QMUL
MuCat2 (Davis et al., 2012) system, at 90kV, 180 A, with beam
hardening filters of 1.2mm Al and 0.05mm Cu, ~2500 projections
and 6 s exposures. Samples consisting of many adherent osteo-
derms were strengthened with Araldite epoxy resin and cut to
smaller pieces to isolate regions containing the bony lesions and
to allow imaging at 10 pm voxel resolution. Whilst scanning, the
samples were supported on perspex rods with adhesive wax (Wax
6969; Poth Hille & Co). Reconstruction and calibration of the grey
levels of the reconstructed data were performed as detailed by
Davis et al. (2012). Volumetric rendering used Drishti scientific
visualisation software (Limaye, 2012) to explore the volumetric
data, produce 3D images and also to guide the cutting and trim-
ming of the samples for further 3D BSE-SEM imaging. BSE-SEM
and XMT Drishti reconstructions were correlated. After XMT, in
some cases, bone was dissolved from Araldite to leave a nega-
tive cast of the lesion for SEM study. Other normal bone tissue
was included in polymethylmethacrylate (PMMA), and the bone
then dissolved to make 3D casts of internal space structure
(Boyde, 2019).

For the D. novemcinctus material, some tissue was addition-
ally embedded in PMMA, and blocks cut and polished to produce
flat sectioned surfaces which were carbon coated and used for
both qualitative and quantitative compositional contrast BSE-SEM
(Boyde, 2019) using a Zeiss DSM962 SEM (Zeiss; Figure S11a); anor-
ganic samples giving 3D topographic contrast were also carbon
coated and imaged with the DSM962 (Figure S11b); and ground sec-
tions were prepared for multiple rotation polarised light microscopy
(Kirby et al., 2020; Figure S11c).

3 | RESULTS

With both 3D BSE-SEM and XMT and in both Chaetophractus and
Tolypeutes, many stages of formation and repair of ‘flea bite’ holes
were observed, from extensive osteoclastic resorption of both
Sharpey fibre bone and internal remodelled osteonal and trabecu-
lar bone to new bone formation and filling of cavities (Figures 1-3;
Figures S5-510).

Three-dimensional BSE-SEM images of the lesions showed re-
sorption pit complexes characteristic of those made by osteoclasts
(Boyde, 2019, 2021; Boyde & Jones, 1991; Saftig et al., 1998). Many
lesions were centred on the syndesmoses (sutures) between adja-
cent bones, but some on the centres of bones. Many lesions showed

evident signs of repair by deposition of new bone.
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FIGURE 1 Chaetophractus villosus scanning electron
microscopy. (a) Lesion at a suture. Field height 3.6 mm. (for 3D see
Figure Séa). (b) Resorption of Sharpey fibre bone in the advancing
edge of a lesion. Field height = 380 um. (3D in Figure Séb).

The 3D available from XMT showed extra non-bone space tun-
nels converging on the lesions, analogous to the micro-anatomy of
overload arthrosis lesions in equine fetlock joints which we have
studied extensively (unpublished).

In the hairy armadillo, C. villosus, there are numbers of cavities in
the distal, backwards-facing edges of the osteoderms, which accom-
modate the hair follicles.

The complicating feature of these piliferous follicle foraminae is
not present in D. novemcinctus or in T. matacus which have no hairs
emanating from the carapace.

Small osteoclastic resorption patches, which had been repaired
by new bone deposition (resorption-formation coupling), were
sometimes encountered on external surfaces of osteoderms in all
three species studied, but this we would expect to find when search-
ing on almost any bone in any mammal (Figure 4).

Key features of the surface structure of normal osteoderms in
D. novemcinctus—which does not have flea bite lesions—are shown
in section the in two-dimensional compositional contrast BSE-
SEM in Figure S11a and in 3D topographical contrast BSE-SEM in
Figure S11b. Figure S11c shows a ground section viewed with multi-
rotation polarised light microscopy.

4 | DISCUSSION
4.1 | Fleasin general

Fleas, Order Siphonaptera, are flightless insects, parasitic on mam-
mals and birds, in which the adults live by sucking blood. Eggs are
shed by the gravid female whilst on the host. Larvae may remain on
the host or live on or in the ground and utilise organic debris as food.
After the last instar, the larva pupates. The quiescent pupa may sur-
vive for a long period before the final metamorphosis to the imago,
or adult form. If this occurred away from the host, the adult has to
jump onto the new host.

4.2 | The sand flea T. penetrans and Tungiasis

The true sand flea T. penetrans (jigger, chigoe and many other syn-
onyms) is parasitic on many mammalian species, and many tens of
millions of impoverished humans are infected in tropical and sub-
tropical latitudes (Eisele et al., 2003; Miller et al., 2019). Tungiasis is
thus a serious pathology in man but is also a major problem in do-
mesticated pigs and cattle. T. penetrans also affects rats, and its life
history and resultant histology has been studied in detail in labora-
tory rats (Feldmeier et al., 2007). Female fleas which have burrowed
their head ends into skin are mated by males in situ. Within the epi-
dermis of the host, they develop a comparatively gigantic swelling
of abdominal segments known as the neosome (the process is called
neosomy—Audy et al., 1972; Geigy & Herbig, 1949; Gordon, 1941;
Linardi & de Avelar, 2014; Pampiglione et al., 2009) and within this
grow large numbers, even hundreds, of eggs which are shed, with
faeces, from the exposed end of the body. The insect penetrates to
the deep layer of the epidermis in man, but through the basement

membrane into the dermis in rats (Feldmeier et al., 2007).

4.3 | Tunga perforans

Tunga perforans is a new Tunga species, so termed because it per-
forates the superficial bone of the osteoderms in certain armadillo
species (Ezquiaga, 2013; Ezquiaga et al., 2015, 2021). Hammond
et al. (2014) show T. perforans type lesions in an archaeological con-
text in pygmy armadillo (Zaedyus pichiy) osteoderms. Evidence from
extinct fossil species shows that similar lesions were made a very
long time ago (late Miocene—Tomassini et al., 2016; Quaternary—de
Lima & Porpino, 2018; Nascimento et al., 2020). Perea et al. (2020)
show, in their figure 5a, an example of a lesion at a triple junction
very similar to those which we have found in the present study in
their study of insect trace fossils in glyptodonts—an extinct subfam-
ily of heavily armoured, large armadillos. There have been no prior
studies of this pathology to date, but Moura et al. (2021) provide a
cartoon (their diagram Figure 4) which is directly pertinent to the
present study. They show a female flea ‘eating into’ bone, being
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FIGURE 2 Chaetophractus villosus. (a-d) A lesion which has undergone substantial repair. (a) Single 10 um XMT slice. (b) 18 XMT slices
displayed in sequence Red Yellow Green Cyan Blue Magenta. (c) Scanning electron microscopy: ellipse indicates the approximate boundary
of the lesion. Field height = 2.59 mm. (d) Drishti rendering of XMT. (e-h) Drishti views of other lesions. () Lower face shows cut through a
lesion at a suture which has undergone substantial infilling repair: two hair follicle cavities at centre right. (f) Lesion in centre of an osteoderm
with early stages of formation of new trabecular bone in its base. (g) One side of a lesion crossing a suture, with hair follicle cavities entering
bone surface from the right at the right. (h) Lesion crossing a suture. Patch had been impregnated with Araldite which shows as silvery colour

in this Drishti reconstruction. XMT, X-ray microtomography.

fertilised, and then its neosome expanding to create a cavity in the
external surface of an osteoderm—this in a Quaternary armadillo—
and without explaining how the cavity is formed. By implication from
the figure, we may be led to believe that part of this process may be

due to the female flea literally eating the bone.

4.4 | Osteophagy by insects

There are reports in the archaeological and palaeontological lit-
erature indicating that insects—especially termites and beetles
but also other genera—may destroy bone to enter and feed in-
side a dead bone—perhaps to make space for other members of
a colony, or to make pupating chambers (Backwell et al., 2012,

2020; Britt et al., 2008; Derry, 1911; Huchet et al., 2011; Paes
Neto et al., 2016; Pirrone et al., 2014; Xing et al., 2015). Britt
et al. (2008) provided convincing good-resolution microscopic
(SEM) studies of surface features of bone surfaces ‘gnawed’ by
insects. Accepting that it does occur, then chitinous insect jaws
must be able to excavate calcified bony tissues as well as any sur-
rounding non-calcified connective tissues (tendon, ligament, fi-
brous periosteum). That is not to say that some of the features
supposed to be due to insect boring and grooving activity could
be quite normal bone structural characters and some may have
been the result of post mortem fungal boring activity (Bell, 1995;
Hackett, 1981; Hagelberg et al., 1991). Nevertheless, some struc-
tures tentatively ascribed to post mortem insect jaw activity at
internal and external surfaces of bones of the endoskeleton in
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FIGURE 3 Tolypeutes matacus. Scanning electron microscopy
(a) lesion at a junction between two osteoderms. Field

height = 4.69 mm (for 3D see Figure S7a). (b) Lesion at a triple
junction. Field height = 5.32mm (3D in Figure S7b).

dinosaurs may be like the T. perforans induced lesions in armadillo
osteoderms. (Pirrone et al., 2014). Thus, the point needs to be con-
sidered, could the female T. perforans chew bone to make space for
the expansion its incipient neosome?

4.5 | Possible mechanisms for the lesion formation

It would seem to us unlikely that the gravid—or gravid-to-be—female
flea, having penetrated the epidermis, could eat its way through any
bony tissue to create a hole of the size and shape of the later-to-be-
formed neosome, albeit that such bone would have been alive, not
dehydrated and not hardened by drying.

Fleas feed on blood, not bone. In so doing, they have to prevent
blood clotting and produce powerful anticoagulant(s) (Lu et al., 2021,
2022). Anticoagulants such as heparin cause osteoporosis (Nelson-
Piercy, 1997, 1998; Signorelli et al., 2019). Heparin directly augments
osteoclastic resorptive activity (Fuller et al., 1991).

Inflammation has a strong association with bone resorption
(Terkawi et al., 2022; Yamaguchi & Fukasawa, 2021). Could other
factors injected by the flea stimulate inflammation and hence

FIGURE 4 Tolypeutes matacus, external surface of an osteoderm
with a 0.5 mm wide resorption patch which is infilling with new
bone. This is a normal finding, unrelated to the flea-induced lesions.
Scanning Electron Microscopy. Field height = 733 um.

resorption? Inflammation can also be caused by a superadded
bacterial infection as in periodontal disease or by pressure due
to swelling such as a tumour. With or without inflammation, the
work of bone tissue removal is done by osteoclasts. They leave the
hallmark imprint of resorption pits and pit complexes which can
be recognised in 3D images of bone surfaces (Boyde, 2019; Boyde
& Jones, 1991; Saftig et al., 1998). Using 3D SEM, we identify this
characteristic bone surface in the flea-induced lesions in the arma-
dillo osteoderms. SEM of surfaces—rather than any method which
involves the disruption of the sample by sectioning—is a very effi-
cient system for searching for and mapping areas where resorption
has occurred.

Bone resorption in vivo can be initiated by pressure in the vi-
cinity of a bone surface, as in clinically induced orthodontic tooth
movements in man and in normal eruptive and mesial drift move-
ments of teeth in alveolar bone in man and other mammals. We can
compare the expanding neosome to a balloon being inflated below
the epidermis and in nearby relationship to a periosteum. Judging
by the histology shown for T. penetrans in situ in rat and in man, the
insect's body, at the neosome, is an implant which is covered in a thin
stratified squamous epithelium (Feldmeier et al., 2007).

From the present observations, we conclude that the flea which
causes the holes in the armadillo osteodermal armour does not itself
attack bone tissue directly. From the morphological data, we can see
that bone removal must have been conducted by osteoclasts, a pro-
cess which we and others have studied extensively in many mam-
malian species, in vivo, ex vivo, in vitro and in silico (Boyde, 2019,
2021; Boyde & Jones, 1991; Saftig et al., 1998). We conclude that
the T. perforans neosome, or its presence, creates a local host in-
flammatory response which causes the recruitment of osteoclasts
and the resultant bone resorption, creating the space in which it can
grow. The histology, biology and molecular biology of the sequence
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of events will be a challenge for future investigations using fresher
or fresh living tissue samples.

The 3D morphology of the bony lesions as revealed by both SEM
and XMT show remodelling—reworking—of the surrounding bone
structure with the development of large blood vessel canal spac-
es—a process itself requiring substantial bone resorption—which
focus onto the lesion. In this respect, the lesions resemble the re-
organisation of bony tissues seen in naturally occurring osteoarthri-
tis in both man and horse (Boyde, 2021). Such remodelling again
indicates that forces other than the insect's own mouth parts are in-
volved in lesion formation, which, we conclude, is work done by and
the response of the host's own bone-related cells. Further, owing
to the superficial location of these lesions, which gives a natural
observational window into bone (Boyde et al., 1995), we speculate
whether they might constitute a useful natural, ‘model’ for future in
vivo observation of events occurring during bone modelling.

Another future challenge is to understand the effect of these
lesions on armadillos' behaviour and health, taking into account the
other lesions of T. penetrans, and possibly another species of Tunga
that penetrate into soft tissues, causing erythema, oedema and pain
in the host and in extreme cases producing considerable necrosis
and bacterial superinfection (Feldmeier et al., 2004, 2007).
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